Crosstalk among immune cells has attracted considerable attention with the advent of immunotherapy as a novel therapeutic approach for challenging diseases, especially cancer, which is the leading cause of mortality worldwide. Dendritic cells—the key antigen-presenting cells—play a pivotal role in immunological response by presenting exogenous epitopes to T cells, which induces the self-defense mechanisms of the body. Furthermore, nanotechnology has provided promising ways for diagnosing and treating cancer in the last decade. The progress in nanoparticle drug carrier development, combined with enhanced understanding of the immune system, has enabled harnessing of anti-tumor immunity. This review focuses on the recent advances in nanotechnology that have improved the therapeutic efficacy of immunotherapies, with emphasis on dendritic cell physiology and its role in presenting antigens and eliciting therapeutic T cell response