research

Joint sparsity-driven inversion and model error correction for radar imaging

Abstract

Solution of inverse problems in imaging requires the use of a mathematical model of the observation process. However such models often involve errors and uncertainties themselves. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed image. Mostly, phase errors vary only in cross-range direction. However, in many situations, it is possible to encounter 2D phase errors, which are both range and cross-range dependent. We propose a sparsity-driven method for joint SAR imaging and correction of 1D as well as 2D phase errors. This method performs phase error correction during the image formation process and provides focused, high-resolution images. Experimental results show the effectiveness of the approach

    Similar works