Increased productivity and part quality can be achieved by selecting machining strategies and conditions properly. At one extreme very high speed and feed rate with small depth of cut can be used for high productivity whereas deep cuts accompanied with slow speeds and feeds may also provide increased material
removal rates in some cases. In this study, it is shown that process models are useful tools to simulate and compare alternative strategies for machining of a part. 5-axis milling of turbine engine compressors made out of titanium alloys is used as the case study where strategies such as flank milling (deep cuts), point milling (light cuts) and stripe milling (medium depths) are compared in terms of process time by considering chatter stability, surface finish and tool deflections