research

The adjacency matrices of complete and nutful graphs

Abstract

A real symmetric matrix G with zero entries on its diagonal is an adjacency matrix associated with a graph G (with weighted edges and no loops) if and only if the non-zero entries correspond to edges of G. An adjacency matrix G belongs to a generalized-nut graph G if every entry in a vector in the nullspace of G is non-zero. A graph G is termed NSSD if it corresponds to a non-singular adjacency matrix G with a singular deck {G- v}, where G- v is the submatrix obtained from G by deleting the vth row and column. An NSSD G whose deck consists of generalized- nut graphs with respect to G is referred to as a G-nutful graph. We prove that a G-nutful NSSD is equivalent to having a NSSD with G-1 as the adjacency matrix of the complete graph. If the entries of G for a G-nutful graph are restricted to 0 or 1, then the graph is known as nuciferous, a concept that has arisen in the context of the quantum mechanical theory of the conductivity of non-singular Carbon molecules according to the SSP model. We characterize nuciferous graphs by their inverse and the nullities of their one- and two-vertex deleted subgraphs. We show that a G-nutful graph is a NSSD which is either K2 or has no pendant edges. Moreover, we reconstruct a labelled NSSD either from the nullspace generators of the ordered one-vertex deleted subgraphs or from the determinants of the ordered two-vertex deleted subgraphs.peer-reviewe

    Similar works