research

Semi-blind sparse channel estimation with constant modulus symbols

Abstract

We propose two methods for the estimation of sparse communication channels. In the first method, we consider the problem of channel estimation based on training symbols, and formulate it as an optimization problem. In this formulation, we combine the objective of fidelity to the received data with a non-quadratic constraint reflecting the prior information about the sparsity of the channel. This approach leads to accurate channel estimates with much shorter training sequences than conventional methods. The second method we propose is aimed at taking advantage of any available training-based data, as well as any "blind" data based on unknown, constant modulus symbols. We propose a semi-blind optimization framework making use of these two types of data, and enforcing the sparsity of the channel, as well as the constant modulus property of the symbols. This approach improves upon the channel estimates based only on training sequences, and also produces accurate estimates for the unknown symbols

    Similar works