Theoretical Studies of Ground and Excited State Reactivity
- Publication date
- Publisher
- Uppsala
Abstract
To exemplify how theoretical chemistry can be applied to understand ground and excited state reactivity, four different chemical reactions have been modeled. The ground state chemical reactions are the simplest models in chemistry. To begin, a route to break down halomethanes through reactions with ground state cyano radical has been selected. Efficient explorations of the potential energy surfaces for these reactions have been carried out using the artificial force induced reaction algorithm. The large number of feasible pathways for reactions of this type, up to eleven, shows that these seemingly simple reactions can be quite complex. This exploration is followed by accurate quantum dynamics with reduced dimensionality for the reaction between Cl− and PH2Cl. The dynamics indicate that increasing the dimensionality of the model to at least two dimensions is a crucial step for an accurate calculation of the rate constant. After considering multiple pathways on a single potential energy surface, various feasible pathways on multiple surfaces have been investigated. As a prototype of these reactions, the thermal decomposition of a four-membered ring peroxide compound, called 1,2-dioxetane, which is the simplest model of chemi- and bioluminescence, has been studied. A detailed description of this model at the molecular level can give rise to a unified understanding of more complex chemiluminescence mechanisms. The results provide further details on the mechanisms and allow to rationalize the high ratio of triplet to singlet dissociation products. Finally, a thermal decomposition of another dioxetane-like compound, called Dewar dioxetane, has been investigated. This study allows to understand the effect of conjugated double bonds adjacent to the dioxetane moiety in the chemiluminescence mechanism of dioxetane. Our studies illustrate that no matter how complex a system is, theoretical chemistry can give a level of insight into chemical processes that cannot be obtained from other methods