Occurrences and Fates of Hydroxylated Polybrominated Diphenyl Ethers in Marine Sediments in Relation to Trophodynamics

Abstract

While occurrences and origins of hydroxylated (OH-) polybrominated diphenyl ethers (PBDEs) in organisms have been reported, the fates of these compounds in abiotic matrixes and related trophodynamics are unclear. The present study measured concentrations of nine OH-PBDEs, twelve methoxylated (MeO-) PBDEs, and eleven PBDEs in marine sediments and explored the trophodynamics of OH-PBDEs in five invertebrates, eight fish, and two species of birds from Liaodong Bay, north China. While concentrations of PBDEs were less than the limit of quantification in sediments, concentrations of ΣOH-PBDEs and ΣMeO-PBDEs were 3.2–116 pg/g dry weight (dw) and 3.8–56 pg/g dw, respectively. When the detected compounds were incubated in native marine sediments the interconversion between 6-OH-BDE47 and 6-MeO-BDE47 was observed. This result is consistent with the similar spatial distributions and significant correlation between the concentrations of these naturally occurring compounds. 6-OH-BDE47 and 2′-OH-BDE68 were detected as the two major congeners in organisms collected from Liaodong Bay, and concentrations were 0.24 ± 0.005 ng/g lw (lipid weight) and 0.088 ± 0.006 ng/g lw, respectively. Biota-sediment accumulation factors (BSAFs) for invertebrates of 6-OH-BDE47 and 2′-OH-BDE68 were 0.017–0.96 and 0.19–1.5 (except for short-necked clam: 6.3), respectively. Lipid-normalized concentrations of 6-OH-BDE47 and 2′-OH-BDE68 decreased significantly with trophic level with TMFs of 0.21 and 0.15, respectively. The fates of OH-PBDEs in sediment together with their trophodynamics in marine food webs suggested that OH-PBDEs are partitioned into sediment and undergo biodilution in the marine food web

    Similar works

    Full text

    thumbnail-image

    Available Versions