Bmi1 deficiency during aging influences neurons resistance to genotoxic stresses and mitochondrial dysfunctions.

Abstract

<p>Proposed model of Bmi1 function in neurons: (A) When over-expressed, Bmi1 represses p53 activity by an unknown mechanism, leading to complete inhibition of p53 pro-apoptotic and pro-oxidant activities and supra-activation of the antioxidant defense system. (B) In young neurons, where Bmi1 expression is robust, Bmi1 partially represses p53 activity, thus allowing modulation of p53-mediated apoptosis and repression of antioxidant response elements (ARE). These elements are present in antioxidant-coding genes activated by the Nrf2 transcription factor. (C) In aging neurons, where Bmi1 expression becomes deficient, p53 is activated (1), leading to induction of apoptosis and inflammation, and in transcriptional repression of antioxidant-coding genes (2). Elevated mitochondrial reactive oxygen species (mROS) concentrations ultimately induce damages to lipids and DNA, which further activate p53 (3), resulting in the formation of a vicious circle. This situation renders old neurons particularly more vulnerable to genotoxic stresses (gs) and mitochondrial dysfunctions. This model is based on data from the present work, and those published previously <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031870#pone.0031870-Chatoo1" target="_blank">[20]</a>.</p

    Similar works

    Full text

    thumbnail-image

    Available Versions