Electron-Deficient Eu<sub>6.5</sub>Gd<sub>0.5</sub>Ge<sub>6</sub> Intermetallic: A Layered Intergrowth Phase of the Gd<sub>5</sub>Si<sub>4</sub>- and FeB-Type Structures

Abstract

A novel electron-poor Eu<sub>6.5</sub>Gd<sub>0.5</sub>Ge<sub>6</sub> compound adopts the Ca<sub>7</sub>Sn<sub>6</sub>-type structure (space group <i>Pnma</i>, <i>Z</i> = 4, <i>a</i> = 7.5943(5) Å, <i>b</i> = 22.905(1) Å, <i>c</i> = 8.3610(4) Å, and <i>V</i> = 1454.4(1) Å<sup>3</sup>). The compound can be seen as an intergrowth of the Gd<sub>5</sub>Si<sub>4</sub>-type (<i>Pnma</i>) R<sub>5</sub>Ge<sub>4</sub> (R = rare earth) and FeB-type (<i>Pnma</i>) RGe compounds. The phase analysis suggests that the Eu<sub>7–<i>x</i></sub>Gd<sub><i>x</i></sub>Ge<sub>6</sub> series displays a narrow homogneity range of stabilizing the Ca<sub>7</sub>Sn<sub>6</sub> structure at <i>x</i> ≈ 0.5. The structural results illustrate the structural rigidity of the <sub>∝</sub><sup>2</sup>[R<sub>5</sub>X<sub>4</sub>] slabs (X = <i>p</i>-element) and a possibility for discovering new intermetallics by combining the <sub>∝</sub><sup>2</sup>[R<sub>5</sub>X<sub>4</sub>] slabs with other symmetry-approximate building blocks. Electronic structure analysis suggests that the stability and composition of Eu<sub>6.5</sub>Gd<sub>0.5</sub>Ge<sub>6</sub> represents a compromise between the valence electron concentration, bonding, and existence of the neighboring EuGe and (Eu,Gd)<sub>5</sub>Ge<sub>4</sub> phases

    Similar works

    Full text

    thumbnail-image

    Available Versions