Abstract

We present a study of the structural, magnetic, and magneto-optical properties of a series of Co-substituted ferrite nanoparticles (NPs) prepared by thermal decomposition of metallo-organic precursors in high boiling solvents. The structural characterization, carried out by using several techniques (transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and magnetic circular dichroism measurements), showed all the samples are high crystalline, 5–6 nm spherical NPs with the cubic spinel structure typical of ferrites. The evolution of lattice parameters with cobalt content suggests that the material is Co-substituted maghemite, also confirmed by XAS and magneto optical (MO) characterizations. The investigation of the magnetic and magneto-optical properties displays peculiar trends with the cobalt content, the main features being the large increase of the saturation magnetization and the anomalous dependence of magnetic anisotropy which reaches its maximum values for intermediate compositions. The large tuneability of this material makes it possible to implement the performances of devices used in biomedical and sensing applications

    Similar works

    Full text

    thumbnail-image

    Available Versions