Electrical Resistivity of Assembled Transparent Inorganic Oxide Nanoparticle Thin Layers: Influence of Silica, Insulating Impurities, and Surfactant Layer Thickness

Abstract

The electrical properties of transparent, conductive layers prepared from nanoparticle dispersions of doped oxides are highly sensitive to impurities. Production of cost-effective thin conducting films for consumer electronics often employs wet processing such as spin and/or dip coating of surfactant-stabilized nanoparticle dispersions. This inherently results in entrainment of organic and inorganic impurities into the conducting layer leading to largely varying electrical conductivity. Therefore, this study provides a systematic investigation on the effect of insulating surfactants, small organic molecules and silica in terms of pressure dependent electrical resistivity as a result of different core/shell structures (layer thickness). Application of high temperature flame synthesis gives access to antimony-doped tin oxide (ATO) nanoparticles with high purity. This well-defined starting material was then subjected to representative film preparation processes using organic additives. In addition ATO nanoparticles were prepared with a homogeneous inorganic silica layer (silica layer thickness from 0.7 to 2 nm). Testing both organic and inorganic shell materials for the electronic transport through the nanoparticle composite allowed a systematic study on the influence of surface adsorbates (e.g., organic, insulating materials on the conducting nanoparticle’s surface) in comparison to well-known insulators such as silica. Insulating impurities or shells revealed a dominant influence of a tunneling effect on the overall layer resistance. Mechanical relaxation phenomena were found for 2 nm insulating shells for both large polymer surfactants and (inorganic) SiO<sub>2</sub> shells

    Similar works

    Full text

    thumbnail-image

    Available Versions