Biotransformation of Hexabromocyclododecanes (HBCDs) with LinBAn HCH-Converting Bacterial Enzyme

Abstract

Hexabromocyclododecanes (HBCDs) and hexachlorocyclohexanes (HCHs) are polyhalogenated hydrocarbons with similar stereochemistry. Both classes of compounds are considered biologically persistent and bioaccumulating pollutants. In 2009, the major HCH stereoisomers came under regulation of the Stockholm convention. Despite their persistence, HCHs are susceptible to bacterial biotransformations. Here we show that LinB, an HCH-converting haloalkane dehalogenase from <i>Sphingobium indicum</i> B90A, is also able to transform HBCDs. Racemic mixtures of α-, β-, and γ-HBCDs were exposed to LinB under various conditions. All stereoisomers were converted, but (−)­α-, (+)­β-, and (+)­γ-HBCDs were transformed faster by LinB than their enantiomers. The enantiomeric excess increased to 8 ± 4%, 27 ± 1%, and 20 ± 2% in 32 h comparable to values of 7.1%, 27.0%, and 22.9% as obtained from respective kinetic models. Initially formed pentabromocyclododecanols (PBCDOHs) were further transformed to tetrabromocyclododecadiols (TBCDDOHs). At least, seven mono- and five dihydroxylated products were distinguished by LC-MS so far. The widespread occurrence of HCHs has led to the evolution of bacterial degradation pathways for such compounds. It remains to be shown if LinB-catalyzed HBCD transformations in vitro can also be observed in vivo, for example, in contaminated soils or in other words if such HBCD biotransformations are important environmental processes

    Similar works

    Full text

    thumbnail-image

    Available Versions