Experiment and Theory of Low-Pressure Nitrogen Adsorption in Organic Layers Supported or Grafted on Inorganic Adsorbents: Toward a Tool To Characterize Surfaces of Hybrid Organic/Inorganic Systems

Abstract

We report experimental nitrogen adsorption isotherms of organics-coated silicas, which exhibit a low-pressure desorption branch that does not meet the adsorption branch upon emptying of the pores. To address the physical origin of such a hysteresis loop, we propose an equilibrium thermodynamic model that enables one to explain this phenomenon. The present model assumes that, upon adsorption, a small amount of nitrogen molecules penetrate within the organic layer and reach adsorption sites that are located on the inorganic surface, between the grafted or adsorbed organic molecules. The number of accessible adsorption sites thus varies with the increasing gas pressure, and then we assume that it stays constant upon desorption. Comparison with experimental data shows that our model captures the features of nitrogen adsorption on such hybrid organic/inorganic materials. In particular, in addition to predicting the shape of the adsorption isotherm, the model is able to estimate, with a reasonable number of adjustable parameters, the height of the low-pressure hysteresis loop and to assess in a qualitative fashion the local density of the organic chains at the surface of the material

    Similar works

    Full text

    thumbnail-image

    Available Versions