UHV-STM Investigations and Numerical Calculations of a Ruthenium β-Diketonato Complex with Protected Ethynyl Ligand: [Ru(dbm)<sub>2</sub>(acac-TIPSA)]

Abstract

The quest of molecular electronic devices necessitates addressing model molecular systems as starting points. Among the targeted functions, electron transfer between specific moieties inside a molecule is expected to play a fundamental role for ultimate logical gates. Here we propose a coordination complex exhibiting two inorganic centers (Ru and Si) that constitutes a step toward a more complex architecture. Starting from the complex <b>1</b> [Ru­(dbm)<sub>2</sub>(acac-I)] (dbm = dibenzoylmethanate ion, acac-<i>I</i> = 3-iodo-2,4-pentanedionate ion), the complex <b>2</b> [Ru­(dbm)<sub>2</sub>(acac-TIPSA)] (acac-TIPSA = 3-(triisopropylsilyl)­acetylene-2,4-pentanedionate ion) was obtained through Sonogashira cross coupling reaction under classical conditions. This complex <b>2</b> was characterized by elemental analysis, IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, UV–vis, cyclic voltammetry, mass spectroscopy as well as X-ray single-crystal diffraction. It crystallized with empirical formula of C<sub>46</sub>H<sub>49</sub>O<sub>6</sub>Ru<sub>1</sub>Si<sub>1</sub> in a monoclinic crystal system and space group <i>P</i>2<sub>1</sub>/<i>c</i> with <i>a</i> = 21.077(3) Å, <i>b</i> = 9.5130(7) Å, <i>c</i> = 21.8790(12) Å, β = 94.125(7)°, <i>V</i> = 4375.5(7) Å<sup>3</sup> and <i>Z</i> = 4. Additionally, scanning tunneling microscopy measurements at liquid He temperature and in an ultrahigh vacuum (UHV-STM) were conducted on complex <b>2</b> on a Ag(111) surface. The STM images, supported by adsorption and STM image calculations, demonstrate that the molecules exist in two stable forms when adsorbed on the metallic surface

    Similar works

    Full text

    thumbnail-image

    Available Versions