Blends of Linear and Long-Chain Branched Poly(l‑lactide)s with High Melt Strength and Fast Crystallization Rate


The long-chain branched polylactides (LCB-PLAs) prepared by coupling the hydroxyl-terminated two-arm (linear) and triarm PLA prepolymers of identical arm length with hexamethylenediacianate (HDI) were used to improve the melt rheological and crystallization properties of linear polylactide resin, PLA 4032D from NatureWorks. The blends containing LCB-PLA displayed higher zero shear viscosities, more significant shear shinning, more melt elasticity, and much longer relaxation times together with significant strain hardening in elongational deformation. <i>T</i><sub>g</sub>, <i>T</i><sub>m</sub> and crystallinity (<i>X</i><sub>c</sub>) of linear PLA remained virtually unaffected, but the crystallization rate increased obviously, since the branch points of LCB-PLAs could play a role of nucleating agent. High melt strength, fast crystallization, and favorable miscibility improved the foaming ability of the linear/LCB-PLA blends, substantially

    Similar works

    Full text


    Available Versions