Connecting [NiFe]- and [FeFe]-Hydrogenases: Mixed-Valence Nickel–Iron Dithiolates with Rotated Structures

Abstract

New mixed-valence iron–nickel dithiolates are described that exhibit structures similar to those of mixed-valence diiron dithiolates. The interaction of tricarbonyl salt [(dppe)­Ni­(pdt)­Fe­(CO)<sub>3</sub>]­BF<sub>4</sub> ([<b>1</b>]­BF<sub>4</sub>, where dppe = Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub> and pdt<sup>2–</sup> = −SCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S−) with P-donor ligands (L) afforded the substituted derivatives [(dppe)­Ni­(pdt)­Fe­(CO)<sub>2</sub>L]­BF<sub>4</sub> incorporating L = PHCy<sub>2</sub> ([<b>1a</b>]­BF<sub>4</sub>), PPh­(NEt<sub>2</sub>)<sub>2</sub> ([<b>1b</b>]­BF<sub>4</sub>), P­(NMe<sub>2</sub>)<sub>3</sub> ([<b>1c</b>]­BF<sub>4</sub>), P­(<i>i</i>-Pr)<sub>3</sub> ([<b>1d</b>]­BF<sub>4</sub>), and PCy<sub>3</sub> ([<b>1e</b>]­BF<sub>4</sub>). The related precursor [(dcpe)­Ni­(pdt)­Fe­(CO)<sub>3</sub>]­BF<sub>4</sub> ([<b>2</b>]­BF<sub>4</sub>, where dcpe = Cy<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PCy<sub>2</sub>) gave the more electron-rich family of compounds [(dcpe)­Ni­(pdt)­Fe­(CO)<sub>2</sub>L]­BF<sub>4</sub> for L = PPh<sub>2</sub>(2-pyridyl) ([<b>2a</b>]­BF<sub>4</sub>), PPh<sub>3</sub> ([<b>2b</b>]­BF<sub>4</sub>), and PCy<sub>3</sub> ([<b>2c</b>]­BF<sub>4</sub>). For bulky and strongly basic monophosphorus ligands, the salts feature distorted coordination geometries at iron: crystallographic analyses of [<b>1e</b>]­BF<sub>4</sub> and [<b>2c</b>]­BF<sub>4</sub> showed that they adopt “rotated” Fe<sup>I</sup> centers, in which PCy<sub>3</sub> occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, members of the new class of complexes are described as Ni<sup>II</sup>Fe<sup>I</sup> (<i>S</i> = <sup>1</sup>/<sub>2</sub>) systems according to electron paramagnetic resonance spectroscopy, although with attenuated <sup>31</sup>P hyperfine interactions. Density functional theory calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [<b>1e</b>]<sup>+</sup> is mostly localized in a Fe<sup>I</sup>-centered d­(<i>z</i><sup>2</sup>) orbital, orthogonal to the Fe–P bond. The PCy<sub>3</sub> complexes, rare examples of species featuring “rotated” Fe centers, both structurally and spectroscopically incorporate features from homobimetallic mixed-valence diiron dithiolates. Also, when the NiS<sub>2</sub>Fe core of the [NiFe]-hydrogenase active site is reproduced, the “hybrid models” incorporate key features of the two major classes of hydrogenase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)­Ni­(pdt)­Fe­(CO)<sub>2</sub>L]<sup>+/2+</sup>. The resulting unsaturated 32e<sup>–</sup> dications represent the closest approach to modeling the highly electrophilic Ni–SI<sub>a</sub> state. In the case of L = PPh<sub>2</sub> (2-pyridyl), chelation of this ligand accompanies the second oxidation

    Similar works

    Full text

    thumbnail-image

    Available Versions