Abstract

Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low-mass range of tandem MS spectra for relative quantification. The number of samples that can be compared in a single experiment (multiplexing) is limited by the number of different reporter ions that can be generated by differential stable isotope incorporation (<sup>15</sup>N, <sup>13</sup>C) across the reporter and the mass balancing parts of the reagents. Here, we demonstrate that a higher multiplexing rate can be achieved by utilizing the 6 mDa mass difference between <sup>15</sup>N- and <sup>13</sup>C-containing reporter fragments, in combination with high-resolution mass spectrometry. Two variants of the TMT127 and TMT129 reagents are available; these are distinguished by the position and the nature of the incorporated stable isotope in the reporter portions of the labels (TMT127L, <sup>12</sup>C<sub>8</sub>H<sub>16</sub><sup>15</sup>N<sub>1</sub><sup>+</sup>; TMT127H, <sup>12</sup>C<sub>7</sub><sup>13</sup>C<sub>1</sub>H<sub>16</sub><sup>14</sup>N<sub>1</sub><sup>+</sup>; TMT129L, <sup>12</sup>C<sub>6</sub><sup>13</sup>C<sub>2</sub>H<sub>16</sub><sup>15</sup>N<sub>1</sub><sup>+</sup>; and TMT129H, <sup>12</sup>C<sub>5</sub><sup>13</sup>C<sub>3</sub>H<sub>16</sub><sup>14</sup>N<sub>1</sub><sup>+</sup>). We demonstrate that these variants can be baseline-resolved in Orbitrap Elite higher-energy collision-induced dissociation spectra recorded with a 96 ms transient enabling comparable dynamic range, precision, and accuracy of quantification as 1 Da spaced reporter ions. The increased multiplexing rate enabled determination of inhibitor potencies in chemoproteomic kinase assays covering a wider range of compound concentrations in a single experiment, compared to conventional 6-plex TMT-based assays

    Similar works

    Full text

    thumbnail-image

    Available Versions