Role of a Metal–Metal Bonded Dimer Dication in the One-Electron Oxidation of Rh(η<sup>5</sup>‑C<sub>5</sub>H<sub>5</sub>)(CO)(PPh<sub>3</sub>) and Related Compounds

Abstract

The anodic oxidation mechanism of RhCp­(CO)­(PPh<sub>3</sub>), <b>1</b>, has been studied in CH<sub>2</sub>Cl<sub>2</sub>/0.1 M [NBu<sub>4</sub>]­[PF<sub>6</sub>]. This complex and its analogue RhCp­(PPh<sub>3</sub>)<sub>2</sub> had been previously shown to form the fulvalenyl dirhodium complexes [Rh<sub>2</sub>FvL<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2+</sup> (Fv = (η<sup>5</sup>,η<sup>5</sup>-C<sub>10</sub>H<sub>8</sub>), L = CO (<b>2</b><sup>2+</sup>) or PPh<sub>3</sub>) upon chemical oxidation. The present work investigated the reaction of <b>1</b> by variable-temperature electrochemistry and IR spectroelectrochemistry. The radical cation <b>1</b><sup>+</sup> initially undergoes a radical–radical coupling reaction, giving the metal–metal bonded dimer dication [Rh<sub>2</sub>Cp<sub>2</sub>(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2+</sup> (<b>5</b><sup>2+</sup>), which dominates at low temperatures. The room-temperature products are best accounted for by hydrogen atom transfer reactions of the dimer dication, affording <b>2</b><sup>2+</sup> and the metal hydride [RhCp­(CO)­(PPh<sub>3</sub>)­H]<sup>+</sup>. The dimetalate complex [Rh<sub>2</sub>(σ:η<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>]<sup>2+</sup> (<b>7</b>) may also be formed. The radical cation of the analogue RhCp­(CO)­(PPh<sub>2</sub>Me) (<b>3</b>) undergoes very rapid formation of a similar metal–metal bonded dimer. A derivative with a large cone angle phosphine, RhCp­(CO)­(P<sup>i</sup>Pr<sub>3</sub>) (<b>4</b>), does not show the same tendency toward oxidative dimerization. The monomer/dimer equilibrium [RhCp­(CO)­L]<sup>+</sup> ⇌ 1/2 [Rh<sub>2</sub>Cp<sub>2</sub>(CO)<sub>2</sub>L<sub>2</sub>]<sup>2+</sup> increasingly favors the dimer in the sequence L = P<sup>i</sup>Pr<sub>3</sub> < PPh<sub>3</sub> < PPh<sub>2</sub>Me < PMe<sub>3</sub>, P­(OPh)<sub>3</sub>, the latter two being based on earlier work. The implied dinuclear hydrogen atom transfer reactions are not mechanistically well understood, but find analogies in the chemistry of second- and third-row early transition metal complexes

    Similar works

    Full text

    thumbnail-image

    Available Versions