Highly Flexible Molecule “Chameleon”: Reversible Thermochromism and Phase Transitions in Solid Copper(II) Diiminate Cu[CF<sub>3</sub>C(NH)CFC(NH)CF<sub>3</sub>]<sub>2</sub>

Abstract

Three thermochromic phases (α, green; β, red; γ, yellow) and six polymorphic modifications (α<sub>1</sub>, monoclinic, <i>P</i>2<sub>1</sub>/<i>n</i>, <i>Z</i> = 2; β<sub>1</sub>, monoclinic, <i>P</i>2<sub>1</sub>/<i>c</i>, <i>Z</i> = 4; β<sub>2</sub>, triclinic, <i>P</i>1̅, <i>Z</i> = 4; β<sub>3</sub>, monoclinic, <i>P</i>2<sub>1</sub>/<i>n</i>, <i>Z</i> = 4; γ<sub>1</sub> and γ<sub>2</sub>, tetragonal, <i>P</i>4<sub>2</sub>/<i>n</i>, <i>Z</i> = 4) have been found and structurally characterized for copper­(II) diiminate Cu­[CF<sub>3</sub>C­(NH)CFC­(NH)CF<sub>3</sub>]<sub>2</sub> (<b>1</b>). The α phase is stable under normal conditions, whereas the high-temperature β and γ phases are metastable at room temperature and transform slowly into the more stable α phase over several days or even weeks. X-ray diffraction study revealed that the title molecules adopt different conformations in the α, β, and γ phases, namely, staircase-like, twisted, and planar, respectively. The investigation of the α, β, and γ phases by differential scanning calorimetry showed that the three endothermic peaks in the range 283, 360, and 438 K are present on their thermograms upon heating/cooling. The two peaks at 283 and 360 K correspond to the solid–solid phase transitions, and the high-temperature peak at 438 K belongs to the melting process of <b>1</b>. The temperature and thermal effect of all the observed transitions depend on the prehistory of the crystalline sample obtained. A reversible thermochromic single-crystal-to-single-crystal α<sub>1</sub>⇌β<sub>1</sub> phase transition occurring within a temperature interval of 353–358 K can be directly observed using a CCD video camera of the X-ray diffractometer. A series of other solid–solid α<sub>1</sub>→γ<sub>1</sub>, β<sub>2</sub>→γ<sub>1</sub>, β<sub>3</sub>→γ<sub>1</sub>, and γ<sub>1</sub>⇌γ<sub>2</sub> phase transitions can be triggered in <b>1</b> by temperature. It has been suggested that, under equilibrium conditions, the α<sub>1</sub>→γ<sub>1</sub> and β<sub>2</sub>→γ<sub>1</sub> phase transitions should proceed stepwise through the α<sub>1</sub>→β<sub>1</sub>→β<sub>2</sub>→β<sub>3</sub>→γ<sub>1</sub> and β<sub>2</sub>→β<sub>3</sub>→γ<sub>1</sub> stages, respectively. The mechanism of the phase transitions is discussed on the basis of experimental and theoretical data

    Similar works

    Full text

    thumbnail-image

    Available Versions