Synthesis, Structures, and Solid State Self-Assemblies of Formyl and Acetyl Substituted Triptycenes and Their Derivatives

Abstract

Starting from triptycene, 2-, (2,6- or 2,7-)­di-, and (2,6,14- or 2,7,14-)­triformyl or acetyl substituted triptycenes were selectively synthesized. The derivatization of the formyl or acetyl substituted triptycenes was then investigated. Consequently, it was found that the formyl-substituted triptycenes could be transformed into cyano substituted triptycene derivatives by the aldoxime formation and dehydration. Acetoxyl- and acetamino-substituted triptycenes were synthesized by Baeyer–Villiger oxidation of acetyl-substituted triptycenes and Beckmann rearrangement of acetyl-oxime triptycenes, respectively. Deacetylation of triacetaminotriptycene provided an alternative way to the synthesis of triaminotriptycene. In addition, 2-ethynyltriptycene could be conveniently synthesized by Corey–Fuchs reaction of 2-formyltriptycene, and 1,3,5-tritriptycenebenzene was obtained in high yield by the dehydration cyclotrimerization of 2-acetyltriptycene. The different functionalized triptycene derivatives and their regioisomers were well characterized by the FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, MS spectra, and single crystal X-ray analyses. Moreover, it was also found that 2,6,14-triacetaminotriptycene with the three amide groups paralleled to their connected aromatic rings could self-assemble into a 2D layer with porous structure, and further 3D microporous architecture by the hydrogen-bond network in the solid state

    Similar works

    Full text

    thumbnail-image

    Available Versions