Amalgamation of Nucleosides and Amino Acids in Antibiotic Biosynthesis: Discovery of an l‑Threonine:Uridine-5′-Aldehyde Transaldolase

Abstract

The lipopeptidyl nucleoside antibiotics represented by A-90289, caprazamycin, and muraymycin are structurally highlighted by a nucleoside core that contains a nonproteinogenic β-hydroxy-α-amino acid named 5′-C-glycyluridine (GlyU). Bioinformatic analysis of the biosynthetic gene clusters revealed a shared open reading frame encoding a protein with sequence similarity to serine hydroxymethyltransferases, resulting in the proposal that this shared enzyme catalyzes an aldol-type condensation with glycine and uridine-5′-aldehyde to furnish GlyU. Using LipK involved in A-90289 biosynthesis as a model, we now functionally assign and characterize the enzyme responsible for the C–C bond-forming event during GlyU biosynthesis as an l-threonine:uridine-5′-aldehyde transaldolase. Biochemical analysis revealed this transformation is dependent upon pyridoxal-5′-phosphate, the enzyme has no activity with alternative amino acids, such as glycine or serine, as aldol donors, and acetaldehyde is a coproduct. Structural characterization of the enzyme product is consistent with stereochemical assignment as the <i>threo</i> diastereomer (5′<i>S</i>,6′<i>S</i>)-GlyU. Thus this enzyme orchestrates C–C bond breaking and formation with concomitant installation of two stereocenters to make a new l-α-amino acid with a nucleoside side chain

    Similar works

    Full text

    thumbnail-image

    Available Versions