Dioscorea sativa

Abstract

<i>Ab initio</i>-based high-throughput computing and screening are now being used to search and predict new functional materials and novel compounds. However, systematic experimental validation on the predictions remains highly challenging, yet desired. Careful comparison between computational predictions and experimental results is sparse in the literature. Here we report on a systematic experimental validation on previously presented computational predictions of a novel alkali carbonophosphate family of compounds. We report the successful hydrothermal synthesis and structural characterization of multiple sodium carbonophosphates. The experimental conditions for formation of the carbonophosphates and the computational results are compared and discussed. We also demonstrate topotactic chemical de-sodiation of one of the compounds, indicating the potential use of this novel class of compounds as Li<sup>+</sup> or Na<sup>+</sup> insertion electrodes

    Similar works