2D-NMR Characterization of Sequence Distributions in the Backbone of Poly(vinylidene fluoride-<i>co</i>-tetrafluoroethylene)

Abstract

NMR is a powerful tool to study the microstructures of poly­(vinylidene fluoride-<i>co</i>-tetrafluoroethylene), poly­(VDF-<i>co</i>-TFE). This study shows that the microstructures in this copolymer can be established completely on the basis of 2D-NMR, in which improved dispersion is achieved by the second dimension (<sup>19</sup>F or <sup>13</sup>C chemical shifts). 2D-NMR has been proven to be extremely effective for identifying the carbon sequence distributions in the polymer main chain. For lower level sequences (3- or 5-carbon sequences), resonance assignments on the basis of one- and two-bond <sup>19</sup>F­{<sup>13</sup>C} gradient heteronuclear single quantum coherence (gHSQC) experiments are in good agreement with assignments obtained by traditional methods. Higher level sequences (7- or 9-carbon sequences), which can not be assigned unambiguously by traditional methods, were determined by <sup>19</sup>F–<sup>19</sup>F gradient double quantum correlation spectroscopy (gdqCOSY), which provides <sup>19</sup>F–<sup>19</sup>F correlations over 3–5 bonds. A quantitative study was also conducted on the composition of this copolymer. Three different approaches were used to calculate the fraction of TFE and the inversion ratio of VDF units

    Similar works

    Full text

    thumbnail-image

    Available Versions