Polymerization of Phenylacetylenes Using Rhodium Catalysts Coordinated by Norbornadiene Linked to a Phosphino or Amino Group

Abstract

The novel rhodium (Rh) catalysts [{nbd-(CH<sub>2</sub>)<sub>4</sub>-X}­RhR] (<b>1</b>, X = PPh<sub>2</sub>, R = Cl; <b>2</b>, X = NPh<sub>2</sub>, R = Cl; <b>3</b>, X = PPh<sub>2</sub>, R = triphenylvinyl; nbd = 2,5-norbornadiene) were synthesized, and their catalytic activities were examined for the polymerization of phenylacetylene (PA) and its derivatives. Rh-103 NMR spectroscopy together with DFT calculations (B3LYP/6-31G*-LANL2DZ) indicated that catalyst <b>1</b> exists in a mononuclear 16-electron state, while <b>2</b> exists in dinuclear states. Catalyst <b>1</b> converted PA less than 1% in the absence of triethylamine (Et<sub>3</sub>N). Addition of Et<sub>3</sub>N and extension of the polymerization time enhanced the monomer conversion. On the other hand, catalysts <b>2</b> and <b>3</b> quantitatively converted PA in the absence of Et<sub>3</sub>N to afford the polymer in good yields. Catalyst <b>3</b> achieved two-stage polymerization of PA

    Similar works

    Full text

    thumbnail-image

    Available Versions