Pesticides may have adverse environmental effects if they are transported to groundwater and surface waters. The vulnerability of water resources to contamination of pesticides must therefore be evaluated. Different stakeholders, with different objectives and requirements, are interested in such vulnerability assessments. Various assessment methods have been developed in the past. For example, the vulnerability of groundwater to pesticide leaching may be evaluated by indices and overlay-based methods, by statistical analyses of monitoring data, or by using process-based models of pesticide fate. No single tool or methodology is likely to be appropriate for all end-users and stakeholders, since their suitability depends on the available data and the specific goals of the assessment. The overall purpose of this thesis was to develop tools, based on different process-based models of pesticide leaching that may be used in groundwater vulnerability assessments. Four different tools have been developed for end-users with varying goals and interests: (i) a tool based on the attenuation factor implemented in a GIS, where vulnerability maps are generated for the islands of Hawaii (U.S.A.), (ii) a simulation tool based on the MACRO model developed to support decision-makers at local authorities to assess potential risks of leaching of pesticides to groundwater following normal usage in drinking water abstraction districts, (iii) linked models of the soil root zone and groundwater to investigate leaching of the pesticide mecoprop to shallow and deep groundwater in fractured till, and (iv) a meta-model of the pesticide fate model MACRO developed for 'worst-case' groundwater vulnerability assessments in southern Sweden. The strengths and weaknesses of the different approaches are discussed