Close human-robot cooperation is a key enabler for new developments in
advanced manufacturing and assistive applications. Close cooperation require
robots that can predict human actions and intent, and understand human
non-verbal cues. Recent approaches based on neural networks have led to
encouraging results in the human action prediction problem both in continuous
and discrete spaces. Our approach extends the research in this direction. Our
contributions are three-fold. First, we validate the use of gaze and body pose
cues as a means of predicting human action through a feature selection method.
Next, we address two shortcomings of existing literature: predicting multiple
and variable-length action sequences. This is achieved by introducing an
encoder-decoder recurrent neural network topology in the discrete action
prediction problem. In addition, we theoretically demonstrate the importance of
predicting multiple action sequences as a means of estimating the stochastic
reward in a human robot cooperation scenario. Finally, we show the ability to
effectively train the prediction model on a action prediction dataset,
involving human motion data, and explore the influence of the model's
parameters on its performance. Source code repository:
https://github.com/pschydlo/ActionAnticipationComment: IEEE International Conference on Robotics and Automation (ICRA) 2018,
Accepte