High resolution magnetic resonance~(MR) imaging~(MRI) is desirable in many
clinical applications, however, there is a trade-off between resolution, speed
of acquisition, and noise. It is common for MR images to have worse
through-plane resolution~(slice thickness) than in-plane resolution. In these
MRI images, high frequency information in the through-plane direction is not
acquired, and cannot be resolved through interpolation. To address this issue,
super-resolution methods have been developed to enhance spatial resolution. As
an ill-posed problem, state-of-the-art super-resolution methods rely on the
presence of external/training atlases to learn the transform from low
resolution~(LR) images to high resolution~(HR) images. For several reasons,
such HR atlas images are often not available for MRI sequences. This paper
presents a self super-resolution~(SSR) algorithm, which does not use any
external atlas images, yet can still resolve HR images only reliant on the
acquired LR image. We use a blurred version of the input image to create
training data for a state-of-the-art super-resolution deep network. The trained
network is applied to the original input image to estimate the HR image. Our
SSR result shows a significant improvement on through-plane resolution compared
to competing SSR methods.Comment: Accepted by IEEE International Symposium on Biomedical Imaging (ISBI)
201