slides

Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks

Abstract

This paper introduces Freestyle, a randomized and variable round version of the ChaCha cipher. Freestyle uses the concept of hash based halting condition where a decryption attempt with an incorrect key is likely to take longer time to halt. This makes Freestyle resistant to key-guessing attacks i.e. brute-force and dictionary based attacks. Freestyle demonstrates a novel approach for ciphertext randomization by using random number of rounds for each block, where the exact number of rounds are unknown to the receiver in advance. Freestyle provides the possibility of generating 21282^{128} different ciphertexts for a given key, nonce, and message; thus resisting key and nonce reuse attacks. Due to its inherent random behavior, Freestyle makes cryptanalysis through known-plaintext, chosen-plaintext, and chosen-ciphertext attacks difficult in practice. On the other hand, Freestyle has costlier cipher initialization process, typically generates 3.125% larger ciphertext, and was found to be 1.6 to 3.2 times slower than ChaCha20. Freestyle is suitable for applications that favor ciphertext randomization and resistance to key-guessing and key reuse attacks over performance and ciphertext size. Freestyle is ideal for applications where ciphertext can be assumed to be in full control of an adversary, and an offline key-guessing attack can be carried out

    Similar works