'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Sustained memory throughput is a key determinant
of performance in HPC devices. Having an accurate estimate of
this parameter is essential for manual or automated design space
exploration for any HPC device. While there are benchmarks for
measuring the sustained memory bandwidth for CPUs and GPUs,
such a benchmark for FPGAs has been missing. We present
MP-STREAM, an OpenCL-based synthetic micro-benchmark for
measuring sustained memory bandwidth, optimized for FPGAs,
but which can be used on multiple platforms. Our main contribution
is the introduction of various generic as well as device-specific
parameters that can be tuned to measure their effect on memory
bandwidth. We present results of running our benchmark on a
CPU, a GPU and two FPGA targets, and discuss our observations.
The experiments underline the utility of our benchmark for
optimizing HPC applications for FPGAs, and provide valuable
optimization hints for FPGA programmers