research

Multilevel quantum Otto heat engines with identical particles

Abstract

A quantum Otto heat engine is studied with multilevel identical particles trapped in one-dimensional box potential as working substance. The symmetrical wave function for Bosons and the anti-symmetrical wave function for Fermions are considered. In two-particle case, we focus on the ratios of WiW^i (i=B,Fi=B,F) to WsW_s, where WBW^B and WFW^F are the work done by two Bosons and Fermions respectively, and WsW_s is the work output of a single particle under the same conditions. Due to the symmetric of the wave functions, the ratios are not equal to 22. Three different regimes, low temperature regime, high temperature regime, and intermediate temperature regime, are analyzed, and the effects of energy level number and the differences between the two baths are calculated. In the multiparticle case, we calculate the ratios of WMi/MW^i_M/M to WsW_s, where WMi/MW^i_M/M can be seen as the average work done by a single particle in multiparticle heat engine. For other working substances whose energy spectrum have the form of Enn2E_n\sim n^2, the results are similar. For the case EnnE_n\sim n, two different conclusions are obtained

    Similar works

    Full text

    thumbnail-image

    Available Versions