research

Global existence and Asymptotic behavior for a system of wave equation in presence of distributed delay term

Abstract

In this paper, we consider the following viscoelastic coupled wave equation with a delay term: utt(x,t)Lu(x,t)0tg1(tσ)Lu(x,σ)dσ+μ1ut(x,t)+τ1τ2μ2(s)ut(x,ts)ds+f1(u,υ)=0,υtt(x,t)Lυ(x,t)0tg2(tσ)Lυ(x,σ)dσ+μ3υt(x,t)+τ1τ2μ4(s)υt(x,ts)ds+f2(u,υ)=0, \begin{gathered} u_{tt}(x,t)-Lu(x,t)-\int_0^t g_1(t-\sigma)L u(x,\sigma)d\sigma + \mu_{1}u_{t}(x,t) + \int_{\tau_1}^{\tau_2} \mu_2(s)u_{t}(x,t-s)ds + f_1(u,\upsilon)=0, \\ \upsilon_{tt}(x,t) - L\upsilon(x,t) - \int_0^t g_{2}(t-\sigma)L \upsilon(x,\sigma)d\sigma + \mu_3\upsilon_t(x,t) + \int_{\tau_1}^{\tau_2} \mu_4(s)\upsilon_{t}(x,t-s)ds + f_{2}(u,\upsilon)=0, \end{gathered} in a bounded domain. Under appropriate conditions on μ1\mu_{1}, μ2\mu_{2}, μ3\mu_{3} and μ4\mu_{4}, we prove global existence result by combining the energy method with the Faedo-Galerkin's procedure. In addition , we focus on asymptotic behavior by using an appropriate Lyapunov functional

    Similar works

    Full text

    thumbnail-image

    Available Versions