research

Global existence and Asymptotic behavior for a system of wave equation in presence of distributed delay term

Abstract

In this paper, we consider the following viscoelastic coupled wave equation with a delay term: utt(x,t)βˆ’Lu(x,t)βˆ’βˆ«0tg1(tβˆ’Οƒ)Lu(x,Οƒ)dΟƒ+ΞΌ1ut(x,t)+βˆ«Ο„1Ο„2ΞΌ2(s)ut(x,tβˆ’s)ds+f1(u,Ο…)=0,Ο…tt(x,t)βˆ’LΟ…(x,t)βˆ’βˆ«0tg2(tβˆ’Οƒ)LΟ…(x,Οƒ)dΟƒ+ΞΌ3Ο…t(x,t)+βˆ«Ο„1Ο„2ΞΌ4(s)Ο…t(x,tβˆ’s)ds+f2(u,Ο…)=0, \begin{gathered} u_{tt}(x,t)-Lu(x,t)-\int_0^t g_1(t-\sigma)L u(x,\sigma)d\sigma + \mu_{1}u_{t}(x,t) + \int_{\tau_1}^{\tau_2} \mu_2(s)u_{t}(x,t-s)ds + f_1(u,\upsilon)=0, \\ \upsilon_{tt}(x,t) - L\upsilon(x,t) - \int_0^t g_{2}(t-\sigma)L \upsilon(x,\sigma)d\sigma + \mu_3\upsilon_t(x,t) + \int_{\tau_1}^{\tau_2} \mu_4(s)\upsilon_{t}(x,t-s)ds + f_{2}(u,\upsilon)=0, \end{gathered} in a bounded domain. Under appropriate conditions on ΞΌ1\mu_{1}, ΞΌ2\mu_{2}, ΞΌ3\mu_{3} and ΞΌ4\mu_{4}, we prove global existence result by combining the energy method with the Faedo-Galerkin's procedure. In addition , we focus on asymptotic behavior by using an appropriate Lyapunov functional

    Similar works

    Full text

    thumbnail-image

    Available Versions