Surface-Tethered Iterative Carbohydrate Synthesis: A Spacer Study

Abstract

Comparative study of Surface-Tethered Iterative Carbohydrate Synthesis (STICS) using HPLC-assisted experimental setup clearly demonstrates benefits of using longer spacer-anchoring systems. The use of mixed self-assembled monolayers helps provide the required space for glycosylation reaction around the immobilized glycosyl acceptor. Both extension of the spacer length and using mixed self-assembled monolayers help promote the reaction, and the beneficial effects may include moving the glycosyl acceptor further out into solution and providing additional conformational flexibility. It is possible that surface-immobilized glycosyl acceptors with a longer spacer (C8–O–C8)-lipoic acid have a higher tendency to mimic a solution-phase reaction environment than acceptors with shorter spacers

    Similar works

    Full text

    thumbnail-image

    Available Versions