Conjugation of Basic Fibroblast Growth Factor on a Heparin Gradient for Regulating the Migration of Different Types of Cells

Abstract

Regulation of cell migration by cell growth factors is critical in tissue regeneration such as angiogenesis, wound healing, and bone formation. In this work, basic fibroblast growth factor (bFGF) with a density varying between 0 and 295 ng/cm<sup>2</sup> was conjugated on heparinized glass slides. The amount of conjugated bFGF was determined by immunofluorescent staining. The mobility of vascular smooth muscle cells (VSMCs) was largely dominated by the bFGF density, whereas that of mesenchymal stem cells (MSCs) and endothelial cells (ECs) was slightly influenced. The migration rate of VSMCs increased initially and then decreased along with the increase of bFGF density. The fastest rate (∼22 μm/h) was found on the bFGF surface with a density of 83 ng/cm<sup>2</sup>. The intrinsic mechanisms of the diverse migration behaviors of the VSMCs, MSCs, and ECs were revealed by studying the expression of bFGF receptors and migration-related proteins. The results show that the cell mobility is regulated by complex and synergetic intracellular signals in a cell type-dependent manner

    Similar works

    Full text

    thumbnail-image

    Available Versions