Late First-Row
Transition Metal Complexes of a Tetradentate Pyridinophane Ligand:
Electronic Properties and Reactivity Implications
- Publication date
- Publisher
Abstract
The
synthesis and structural comparison are reported herein for a series
of late first-row transition metal complexes using a macrocyclic pyridinophane
ligand, <i>N</i>,<i>N</i>′-di-<i>tert</i>-butyl-2,11-diaza[3.3](2,6)pyridinophane (<sup>tBu</sup>N4). The <sup>tBu</sup>N4 ligand enforces a distorted octahedral geometry in complexes
[(<sup>tBu</sup>N4)M<sup>II</sup>(MeCN)<sub>2</sub>](OTf)<sub>2</sub> (M = Fe<sup>II</sup>, Co<sup>II</sup>, Ni<sup>II</sup>, Cu<sup>II</sup>), [(<sup>tBu</sup>N4)Zn<sup>II</sup>(MeCN)(OTf)](OTf), and [(<sup>tBu</sup>N4)Fe<sup>III</sup>(OMe)<sub>2</sub>](OTf), with elongated
axial M–N<sub>amine</sub> distances compared to the equatorial
M–N<sub>py</sub> distances. The geometry of [(<sup>tBu</sup>N4)Cu<sup>I</sup>(MeCN)](OTf) is pentacoordinate with weak axial
interactions with the amine N-donors of <sup>tBu</sup>N4. Complexes
[(<sup>tBu</sup>N4)M(MeCN)<sub>2</sub>](OTf)<sub>2</sub> (M = Fe,
Co) exhibit magnetic properties that are intermediate between those
expected for high spin and low spin complexes. Electrochemical studies
of (<sup>tBu</sup>N4)M complexes suggest that <sup>tBu</sup>N4 is
suitable to stabilize Co<sup>I</sup>, Ni<sup>I</sup>, Co<sup>III</sup>, Fe<sup>III</sup> solvato-complexes, while the electrochemical oxidation
of (<sup>tBu</sup>N4)NiCl<sub>2</sub> complex leads to formation of
a Ni<sup>III</sup> species, supporting the ability of the <sup>tBu</sup>N4 ligand to stabilize first row transition metal complexes in various
oxidation states. Importantly, the [(<sup>tBu</sup>N4)M<sup>II</sup>(MeCN)<sub>2</sub>]<sup>2+</sup> complexes exhibit two available <i>cis</i> coordination sites and thus can mediate reactions involving
exogenous ligands. For example, the [(<sup>tBu</sup>N4)Cu<sup>II</sup>(MeCN)<sub>2</sub>]<sup>2+</sup> species acts as an efficient Lewis
acid and promotes an uncommon hydrolytic coupling of nitriles. In
addition, initial UV–vis and electron paramagnetic resonance
(EPR) studies show that the [(<sup>tBu</sup>N4)Fe<sup>II</sup>(MeCN)<sub>2</sub>]<sup>2+</sup> complex reacts with oxidants such as H<sub>2</sub>O<sub>2</sub> and peracetic acid to form high-valent Fe transient
species. Overall, these results suggest that the (<sup>tBu</sup>N4)M<sup>II</sup> systems should be able to promote redox transformations
involving exogenous substrates