Late First-Row Transition Metal Complexes of a Tetradentate Pyridinophane Ligand: Electronic Properties and Reactivity Implications

Abstract

The synthesis and structural comparison are reported herein for a series of late first-row transition metal complexes using a macrocyclic pyridinophane ligand, <i>N</i>,<i>N</i>′-di-<i>tert</i>-butyl-2,11-diaza­[3.3]­(2,6)­pyridinophane (<sup>tBu</sup>N4). The <sup>tBu</sup>N4 ligand enforces a distorted octahedral geometry in complexes [(<sup>tBu</sup>N4)­M<sup>II</sup>(MeCN)<sub>2</sub>]­(OTf)<sub>2</sub> (M = Fe<sup>II</sup>, Co<sup>II</sup>, Ni<sup>II</sup>, Cu<sup>II</sup>), [(<sup>tBu</sup>N4)­Zn<sup>II</sup>(MeCN)­(OTf)]­(OTf), and [(<sup>tBu</sup>N4)­Fe<sup>III</sup>(OMe)<sub>2</sub>]­(OTf), with elongated axial M–N<sub>amine</sub> distances compared to the equatorial M–N<sub>py</sub> distances. The geometry of [(<sup>tBu</sup>N4)­Cu<sup>I</sup>(MeCN)]­(OTf) is pentacoordinate with weak axial interactions with the amine N-donors of <sup>tBu</sup>N4. Complexes [(<sup>tBu</sup>N4)­M­(MeCN)<sub>2</sub>]­(OTf)<sub>2</sub> (M = Fe, Co) exhibit magnetic properties that are intermediate between those expected for high spin and low spin complexes. Electrochemical studies of (<sup>tBu</sup>N4)­M complexes suggest that <sup>tBu</sup>N4 is suitable to stabilize Co<sup>I</sup>, Ni<sup>I</sup>, Co<sup>III</sup>, Fe<sup>III</sup> solvato-complexes, while the electrochemical oxidation of (<sup>tBu</sup>N4)­NiCl<sub>2</sub> complex leads to formation of a Ni<sup>III</sup> species, supporting the ability of the <sup>tBu</sup>N4 ligand to stabilize first row transition metal complexes in various oxidation states. Importantly, the [(<sup>tBu</sup>N4)­M<sup>II</sup>(MeCN)<sub>2</sub>]<sup>2+</sup> complexes exhibit two available <i>cis</i> coordination sites and thus can mediate reactions involving exogenous ligands. For example, the [(<sup>tBu</sup>N4)­Cu<sup>II</sup>(MeCN)<sub>2</sub>]<sup>2+</sup> species acts as an efficient Lewis acid and promotes an uncommon hydrolytic coupling of nitriles. In addition, initial UV–vis and electron paramagnetic resonance (EPR) studies show that the [(<sup>tBu</sup>N4)­Fe<sup>II</sup>(MeCN)<sub>2</sub>]<sup>2+</sup> complex reacts with oxidants such as H<sub>2</sub>O<sub>2</sub> and peracetic acid to form high-valent Fe transient species. Overall, these results suggest that the (<sup>tBu</sup>N4)­M<sup>II</sup> systems should be able to promote redox transformations involving exogenous substrates

    Similar works

    Full text

    thumbnail-image

    Available Versions