Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-Air Batteries

Abstract

Ruthenium-based nanomaterials supported on reduced graphene oxide (rGO) have been investigated as air cathodes in non-aqueous electrolyte Li-air cells using a TEGDME-LiCF<sub>3</sub>SO<sub>3</sub> electrolyte. Homogeneously distributed metallic ruthenium and hydrated ruthenium oxide (RuO<sub>2</sub>·0.64H<sub>2</sub>O), deposited exclusively on rGO, have been synthesized with average size below 2.5 nm. The synthesized hybrid materials of Ru-based nanoparticles supported on rGO efficiently functioned as electrocatalysts for Li<sub>2</sub>O<sub>2</sub> oxidation reactions, maintaining cycling stability for 30 cycles without sign of TEGDME-LiCF<sub>3</sub>SO<sub>3</sub> electrolyte decomposition. Specifically, RuO<sub>2</sub>·0.64H<sub>2</sub>O-rGO hybrids were superior to Ru-rGO hybrids in catalyzing the OER reaction, significantly reducing the average charge potential to ∼3.7 V at the high current density of 500 mA g<sup>–1</sup> and high specific capacity of 5000 mAh g<sup>–1</sup>

    Similar works

    Full text

    thumbnail-image

    Available Versions