Bodipy Derivatives as Organic Triplet Photosensitizers for Aerobic Photoorganocatalytic Oxidative Coupling of Amines and Photooxidation of Dihydroxylnaphthalenes

Abstract

We used iodo-Bodipy derivatives that show strong absorption of visible light and long-lived triplet excited states as organic catalysts for photoredox catalytic organic reactions. Conventionally most of the photocatalysts are based on the off-the-shelf compounds, usually showing weak absorption in the visible region and short triplet excited state lifetimes. Herein, the organic catalysts are used for two photocatalyzed reactions mediated by singlet oxygen (<sup>1</sup>O<sub>2</sub>), that is, the aerobic oxidative coupling of amines and the photooxidation of dihydroxylnaphthalenes, which is coupled to the subsequent addition of amines to the naphthoquinones, via C–H functionalization of 1,4-naphthoquinone, to produce <i>N</i>-aryl-2-amino-1,4-naphthoquinones (one-pot reaction), which are anticancer and antibiotic reagents. The photoreactions were substantially accelerated with these new iodo-Bodipy organic photocatalysts compared to that catalyzed with the conventional Ru­(II)/Ir­(III) complexes, which show weak absorption in the visible region and short-lived triplet excited states. Our results will inspire the design and application of new organic triplet photosensitizers that show strong absorption of visible light and long-lived triplet excited state and the application of these catalysts in photoredox catalytic organic reactions

    Similar works

    Full text

    thumbnail-image

    Available Versions