Multi-Level Approach for the Integrated Assessment of Polar Organic Micropollutants in an International Lake Catchment: The Example of Lake Constance

Abstract

Polar organic micropollutants (MPs) can have ecotoxicological effects on aquatic ecosystems and their occurrence in drinking water is a threat to public health. An extensive exposure assessment of MPs in large river and lake catchments is a necessary but challenging proposition for researchers and regulators. To get a complete picture of MP exposure in a large catchment, we employed a novel integrated strategy including MP measurement in the international catchment of Lake Constance and mass-flux modeling. A comprehensive screening of 252 MPs in the lake water by high-resolution mass spectrometry was used to identify the most commonly present MPs for the study site. It was found that the wastewater borne MPs diclofenac, carbamazepine, sulfamethoxazole, acesulfame, sucralose, benzotriazole, and methylbenzotriazole accounted for the most frequent and prominent findings. The concentration pattern of these compounds in the catchment was calculated based on regionalized inputs from wastewater treatment plants (WWTPs) and substance specific elimination rates. In 52, 8, and 3 of the 112 investigated river locations the concentration exceeded the predicted no-effect levels for diclofenac, sulfamethoxazole and carbamazepine, respectively. By coupling the catchment and lake model the effect of future trends in usage as well as possible mitigation options were evaluated for the tributaries and the lake. The upgrade of the major WWTPs in the catchment with a postozonation step would lead to a load reduction between 32% and 52% for all substances except for sucralose (10%)

    Similar works

    Full text

    thumbnail-image

    Available Versions