Electrostatic Modulation of Aromatic Rings via Explicit Solvation of Substituents

Abstract

Solvent effects are implicated as playing a major role in modulating electrostatic interactions via through-space and polarization effects, but these phenomena are often hard to dissect. By using synthetic molecular torsion balances and a simple explicit solvation model, we demonstrate that the solvation of substituents substantially affects the electrostatic potential of aromatic rings. Although polarization effects are important, we show that a simple additive through-space model also provides a reasonable account of the experimental data. The results deliver insights into solvent structure and might contribute to the development of computationally inexpensive solvent models

    Similar works

    Full text

    thumbnail-image

    Available Versions