Conversion of a Hydrido–Butenylcarbyne Complex to η<sup>2</sup>‑Allene-Coordinated Complexes and Metallabenzenes

Abstract

Treatment of OsCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> with HCCCH­(OH)­Et produces the cyclic complex Os­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>(CHC­(PPh<sub>3</sub>)­CH­(OH)­CH<sub>2</sub>CH<sub>3</sub>) (<b>1</b>), which can undergo dehydration to give the hydrido–alkenylvinylidene complex Os­(PPh<sub>3</sub>)<sub>2</sub>HCl<sub>2</sub>(CC­(PPh<sub>3</sub>)­CHCHCH<sub>3</sub>) (<b>2</b>). Reaction of <b>2</b> with HBF<sub>4</sub> generates the hydrido–butenylcarbyne complex [OsHCl<sub>2</sub>(CC­(PPh<sub>3</sub>)CH­(Et))­(PPh<sub>3</sub>)<sub>2</sub>]­BF<sub>4</sub> (<b>3</b>). The complex <b>3</b> evolves into the unstable metallabenzene [(PPh<sub>3</sub>)<sub>2</sub>(RCN)­ClOs­(CHC­(PPh<sub>3</sub>)­CHCHCH)]­BF<sub>4</sub> (<b>4</b>; RCN = benzonitrile, 2-cyanobenzaldehyde, 3-methoxyacrylonitrile, 2-cyanoacetamide) via triple hydrogen eliminations in the presence of excess nitriles in refluxing CHCl<sub>3</sub> in an air atmosphere. The ligand substitution reaction of <b>4</b> with excess CO affords the stable metallabenzene product [(PPh<sub>3</sub>)<sub>2</sub>(CO)­ClOs­(CHC­(PPh<sub>3</sub>)­CHCHCH)]­BF<sub>4</sub> (<b>5</b>). The key intermediates, η<sup>2</sup>-allene-coordinated osmium complexes [(PPh<sub>3</sub>)<sub>2</sub>(RCN)­ClOs­(CHC­(PPh<sub>3</sub>)­CHCCH<sub>2</sub>)]­BF<sub>4</sub> (<b>6</b>; RCN = benzonitrile, 2-cyanobenzaldehyde, 3-methoxyacrylonitrile, 2-cyanoacetamide) can be captured by performing the conversion at room temperature. Remarkably, in the absence of nitriles, reaction of <b>3</b> with excess CO only generates the vinylethenyl complex [(PPh<sub>3</sub>)<sub>2</sub>(CO)<sub>2</sub>ClOs­(CHC­(PPh<sub>3</sub>)­CHCHCH<sub>3</sub>)]­BF<sub>4</sub> (<b>7</b>). The complexes <b>1</b>–<b>3</b>, <b>5</b>, <b>6a</b>, and <b>7</b> have been structurally characterized by single-crystal X-ray diffraction. Detailed mechanisms of the conversions have been investigated with the aid of density functional theory (DFT) calculations. DFT calculations suggest that the high stablility of the carbonyl coordinated complexes in the conversion inhibits the further transformation to metallabenzene product. However, the transformation is both kinetically and thermodynamically favorable in the presence of the relatively weaker nitrile ligand, which is consistent with the experimental conversion of <b>3</b> to <b>5</b> via unstable metallabenzenes <b>4</b> observed for in situ NMR experiments

    Similar works

    Full text

    thumbnail-image

    Available Versions