Rapid and Accurate Measurement of the Frequency–Frequency Correlation Function

Abstract

Using an implementation of heterodyne-detected vibrational echo spectroscopy, we show that equilibrium spectral diffusion caused by solvation dynamics can be measured in a fraction of the time required using traditional two-dimensional infrared spectroscopy. Spectrally resolved, heterodyne-detected rephasing and nonrephasing signals, recorded at a single delay between the first two pulses in a photon echo sequence, can be used to measure the full waiting time dependent spectral dynamics that are typically extracted from a series of 2D-IR spectra. Hence, data acquisition is accelerated by more than 1 order of magnitude, while permitting extremely fine sampling of the spectral dynamics during the waiting time between the second and third pulses. Using cymantrene (cyclopentadienyl manganese tricarbonyl, CpMn­(CO)<sub>3</sub>) in alcohol solutions, we compare this novel approachdenoted rapidly acquired spectral diffusion (RASD)with a traditional method using full 2D-IR spectra, finding excellent agreement. Though this approach is largely limited to isolated vibrational bands, we also show how to remove interference from cross-peaks that can produce characteristic modulations of the spectral dynamics through vibrational quantum beats

    Similar works

    Full text

    thumbnail-image

    Available Versions