Complex Self-Assembled Morphologies of Thin Films of an Asymmetric A<sub>3</sub>B<sub>3</sub>C<sub>3</sub> Star Polymer

Abstract

An asymmetric nine-arm star polymer, (polystyrene)<sub>3</sub>-(poly­(4-methoxystyrene))<sub>3</sub>-(polyisoprene)<sub>3</sub> (PS<sub>3</sub>-PMOS<sub>3</sub>-PI<sub>3</sub>) was synthesized, and the details of the structures of its thin films were successfully investigated for the first time by using in situ grazing incidence X-ray scattering (GIXS) with a synchrotron radiation source. Our quantitative GIXS analysis showed that thin films of the star polymer molecules have very complex but highly ordered and preferentially in-plane oriented hexagonal (HEX) structures consisting of truncated PS cylinders and PMOS triangular prisms in a PI matrix. This HEX structure undergoes a partial rotational transformation process at temperatures above 190 °C that produces a 30°-rotated HEX structure; this structural isomer forms with a volume fraction of 23% during heating up to 220 °C and persists during subsequent cooling. These interesting and complex self-assembled nanostructures are discussed in terms of phase separation, arm number, volume ratio, and confinement effects

    Similar works

    Full text

    thumbnail-image

    Available Versions