Chameleon-like Self-Assembling Peptides for Adaptable Biorecognition Nanohybrids

Abstract

We present here the development of adaptable hybrid materials in which self-assembling peptides can sense the diameter/curvature of carbon nanotubes and then adjust their overall structures from disordered states to α-helices, and <i>vice versa</i>. The peptides within the hybrid materials show exceptionally high thermal-induced conformational stability and molecular recognition capability for target RNA. This study shows that the context-dependent protein-folding effects can be realized in artificial nanosystems and provides a proof of principle that nanohybrid materials decorated with structured and adjustable peptide units can be fabricated using our strategy, from which smart and responsive organic/inorganic hybrid materials capable of sensing and controlling diverse biological molecular recognition events can be developed

    Similar works

    Full text

    thumbnail-image

    Available Versions