Ratiometric Nanothermometer Based on an Emissive Ln<sup>3+</sup>-Organic Framework

Abstract

Luminescent thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. Lanthanide-based materials are among the most versatile thermal probes used in luminescent nanothermometers. Here, nanorods of metal organic framework Tb<sub>0.99</sub>Eu<sub>0.01</sub>(BDC)<sub>1.5</sub>(H<sub>2</sub>O)<sub>2</sub> (BDC = 1-4-benzendicarboxylate) have been prepared by the reverse microemulsion technique and characterized and their photoluminescence properties studied from room temperature to 318 K. Aqueous suspensions of these nanoparticles display an excellent performance as ratiometric luminescent nanothermometers in the physiological temperature (300–320 K) range

    Similar works

    Full text

    thumbnail-image

    Available Versions