Catalyst-Controlled Aliphatic C–H Oxidations with a Predictive Model for Site-Selectivity

Abstract

Selective aliphatic C-H bond oxidations may have a profound impact on synthesis because these bonds exist across all classes of organic molecules. Central to this goal are catalysts with broad substrate scope (small-molecule-like) that predictably enhance or overturn the substrate’s inherent reactivity preference for oxidation (enzyme-like). We report a simple small-molecule, non-heme iron catalyst that achieves predictable catalyst-controlled site-selectivity in preparative yields over a range of topologically diverse substrates. A catalyst reactivity model quantitatively correlates the innate physical properties of the substrate to the site-selectivities observed as a function of the catalyst

    Similar works

    Full text

    thumbnail-image

    Available Versions