NMR Investigations of Dinuclear, Single-Anion Bridged Copper(II) Metallacycles: Structure and Antiferromagnetic Behavior in Solution

Abstract

The nuclear magnetic resonance (NMR) spectra of single-anion bridged, dinuclear copper­(II) metallacycles [Cu<sub>2</sub>(μ-X)­(μ-<b>L</b>)<sub>2</sub>]­(A)<sub>3</sub> (<b>L</b><sub><i><b>m</b></i></sub> = <i>m</i>-bis­[bis­(1-pyrazolyl)­methyl]­benzene: X = F<sup>–</sup>, A = BF<sub>4</sub><sup>–</sup>; X = Cl<sup>–</sup>, OH<sup>–</sup>, A = ClO<sub>4</sub><sup>–</sup>; <b>L</b><sub><i><b>m</b></i></sub><b>*</b> = <i>m</i>-bis­[bis­(3,5-dimethyl-1-pyrazolyl)­methyl]­benzene: X = CN<sup>–</sup>, F<sup>–</sup>, Cl<sup>–</sup>, OH<sup>–</sup>, Br<sup>–</sup>, A = ClO<sub>4</sub><sup>–</sup>) have relatively sharp <sup>1</sup>H and <sup>13</sup>C NMR resonances with small hyperfine shifts due to the strong antiferromagnetic superexchange interactions between the two <i>S</i> = <sup>1</sup>/<sub>2</sub> metal centers. The complete assignments of these spectra, except X = CN<sup>–</sup>, have been made through a series of NMR experiments: <sup>1</sup>H–<sup>1</sup>H COSY, <sup>1</sup>H–<sup>13</sup>C HSQC, <sup>1</sup>H–<sup>13</sup>C HMBC, <i>T</i><sub>1</sub> measurements and variable-temperature <sup>1</sup>H NMR. The <i>T</i><sub>1</sub> measurements accurately determine the Cu···H distances in these molecules. In solution, the temperature dependence of the chemical shifts correlate with the population of the paramagnetic triplet (<i>S</i> = 1) and diamagnetic singlet (<i>S</i> = 0) states. This correlation allows the determination of antiferromagnetic exchange coupling constants, −<i>J</i> (<b>Ĥ</b> = −<i>J</i><b>Ŝ</b><sub>1</sub><b>Ŝ</b><sub>2</sub>), in solution for the <b>L</b><sub><i><b>m</b></i></sub> compounds 338­(F<sup>–</sup>), 460­(Cl<sup>–</sup>), 542­(OH<sup>–</sup>), for the <b>L</b><sub><i><b>m</b></i></sub>* compounds 128­(CN<sup>–</sup>), 329­(F<sup>–</sup>), 717­(Cl<sup>–</sup>), 823­(OH<sup>–</sup>), and 944­(Br<sup>–</sup>) cm<sup>–1</sup>, respectively. These values are of similar magnitudes to those previously measured in the solid state (−<i>J</i><sub>solid</sub> = 365, 536, 555, 160, 340, 720, 808, and 945 cm<sup>–1</sup>, respectively). This method of using NMR to determine −<i>J</i> values in solution is an accurate and convenient method for complexes with strong antiferromagnetic superexchange interactions. In addition, the similarity between the solution and solid-state −<i>J</i> values of these complexes confirms the information gained from the <i>T</i><sub>1</sub> measurements: the structures are similar in the two states

    Similar works

    Full text

    thumbnail-image

    Available Versions