Topological Surface Transport Properties of Single-Crystalline SnTe Nanowire

Abstract

SnTe has attracted worldwide interest since its theoretical predication as topological crystalline insulator. Because of promising applications of one-dimensional topological insulator in nanoscale electronics and spintronics device, it is very important to realize the observation of topological surface states in one-dimensional SnTe. In this work, for the first time we successfully synthesized high-quality single crystalline SnTe nanowire via gold-catalyst chemical vapor deposition method. Systematical investigation of Aharonov-Bohm and Shubnikov-de Haas oscillations in single SnTe nanowire prove the existence of Dirac electrons. Further analysis of temperature-dependent Shubnikov-de Haas oscillations gives valuable information of cyclotron mass, mean-free path, and mobility of Dirac electrons in SnTe nanowire. Our study provides the experimental groundwork for research in low-dimensional topological crystalline insulator materials and paves the way for the application of SnTe nanowire in nanoelectronics and spintronics device

    Similar works

    Full text

    thumbnail-image

    Available Versions