Abstract

Sn-based nanostructures have emerged as promising alternative materials for commercial lithium–graphite anodes in lithium ion batteries (LIBs). However, there is limited information on their phase evolution during the discharge/charge cycles. In the present work, we comparatively investigated how the phases of Sn, tin sulfide (SnS), and tin oxide (SnO<sub>2</sub>) nanocrystals (NCs) changed during repeated lithiation/delithiation processes. All NCs were synthesized by a convenient gas-phase photolysis of tetramethyl tin. They showed excellent cycling performance with reversible capacities of 700 mAh/g for Sn, 880 mAh/g for SnS, and 540 mAh/g for SnO<sub>2</sub> after 70 cycles. Tetragonal-phase Sn (β-Sn) was produced upon lithiation of SnS and SnO<sub>2</sub> NCs. Remarkably, a cubic phase of diamond-type Sn (α-Sn) coexisting with β-Sn was produced by lithiation for all NCs. As the cycle number increased, α-Sn became the dominant phase. First-principles calculations of the Li intercalation energy of α-Sn (Sn<sub>8</sub>) and β-Sn (Sn<sub>4</sub>) indicate that Sn<sub>4</sub>Li<sub><i>x</i></sub> (<i>x</i> ≤ 3) is thermodynamically more stable than Sn<sub>8</sub>Li<sub><i>x</i></sub> (<i>x</i> ≤ 6) when both have the same composition. α-Sn maintains its crystalline form, while β-Sn becomes amorphous upon lithiation. Based on these results, we suggest that once α-Sn is produced, it can retain its crystallinity over the repeated cycles, contributing to the excellent cycling performance

    Similar works

    Full text

    thumbnail-image

    Available Versions