Polymer-Mediated Formation and Assembly of Silver Nanoparticles on Silica Nanospheres for Sensitive Surface-Enhanced Raman Scattering Detection

Abstract

To impart a desired optical property to metal nanoparticles (NPs) suitable for surface-enhanced Raman scattering (SERS) applications, it is crucial to assemble them in two or three dimensions in addition to controlling their size and shape. Herein, we report a new strategy for the synthesis and direct assembly of Ag NPs on silica nanospheres (AgNPs-SiNS) in the presence of poly­(ethylene glycol) (PEG) derivatives such as PEG-OH, bis­(amino)-PEGs (DA-PEGs), and <i>O</i>,<i>O</i>′-bis­(2-aminopropyl)­PEG (DAP-PEG). They exhibited different effects on the formation of Ag NPs with variable sizes (10–40 nm) and density on the silica surface. As the molecular weight (MW) of DA-PEGs increased, the number of Ag NPs on the silica surface increased. In addition, DAP-PEG (MW of 2000), which has a 2-aminopropyl moiety at both ends, promoted the most effective formation and assembly of uniform-sized Ag NPs on a silica surface, as compared to the other PEG derivatives with the same molecular weight. Finally, we demonstrated that AgNPs-SiNS bearing 4-fluorobenzenethiol on its surface induced the strong SERS signal at the single-particle level, indicating that each hybrid particle has internal hot spots. This shows the potential of AgNPs-SiNS for SERS-based sensitive detection of target molecules

    Similar works

    Full text

    thumbnail-image

    Available Versions