Highly Moldable Electrospun Clay-Like Fluffy Nanofibers for Three-Dimensional Scaffolds

Abstract

The development of three-dimensional polymeric systems capable of mimicking the extracellular matrix is critical for advancing tissue engineering. To achieve these objectives, three-dimensional fibrous scaffolds with “clay”-like properties were successfully developed by coaxially electrospinning polystyrene (PS) and poly­(ε-caprolactone) (PCL) and selective leaching. As PS is known to be nonbiodegradable and vulnerable to mechanical stress, PS layers present at the outer surface were removed using a “selective leaching” process. The fibrous PCL scaffolds that remained after the leaching step exhibited highly advantageous characteristics as a tissue engineering scaffold, including moldability (i.e., clay-like), flexibility, and three-dimensional structure (i.e., cotton-like). More so, the “clay-like” PCL fibrous scaffolds could be shaped into any desired form, and the microenvironment within the clay scaffolds was highly favorable for cell expansion both in vitro and in vivo. These “electrospun-clay” scaffolds overcome the current limitations of conventional electrospun, sheet-like scaffolds, which are structurally inflexible. Therefore, this work extends the scope of electrospun fibrous scaffolds toward a variety of tissue engineering applications

    Similar works

    Full text

    thumbnail-image

    Available Versions