General Design Strategy for Aromatic Ketone-Based Single-Component Dual-Emissive Materials

Abstract

Materials with both fluorescence and room-temperature phosphorescence (RTP) can be useful in the field of optoelectronics. Here we present a general strategy, taking advantage of carbonyl compounds, which have been known to possess efficient intersystem crossing with high triplet state yield, as well as a strongly fluorescent intramolecular charge-transfer (ICT) state, to produce materials with both fluorescence and RTP at the same time, or dual-emission. In the presented model systems, in order to generate a suitable ICT state, Lewis acid binding to aromatic ketone derivatives has been proved to be a viable method. We have selected AlCl<sub>3</sub>, BCl<sub>3</sub>, BF<sub>3</sub>, and GdCl<sub>3</sub> as binding Lewis acids, in that they exhibit sufficiently strong binding affinity toward the aromatic ketone derivatives to afford stable complexes and yet do not possess low-lying electronic transitions vs the ligands. We have successfully observed dual-emission from these designed complexes in polymers, which act to suppress competitive thermal decay at room temperature. One of the complexes is particularly interesting as it is dual-emissive in the crystalline state. Single-crystal XRD reveals that the molecule forms multiple hydrogen bonds with its neighbors in crystals, which may significantly enhance the rigidity of the environment

    Similar works

    Full text

    thumbnail-image

    Available Versions